Investigation on coordination modes of organotin(IV) complexes with 6-thiopurine and related ligands

Chunlin Ma ${ }^{\text {a,b,*, }}$, Jiafeng Sun ${ }^{\text {a }}$, Yang Shi ${ }^{\text {a }}$, Rufen Zhang ${ }^{\text {a }}$
${ }^{a}$ Department of Chemistry, Liaocheng University, 34 Wenhua Road, Liaocheng 252059, PR China
${ }^{\text {b }}$ Taishan University, Taian 271021, PR China

Received 5 November 2004; accepted 21 December 2004
Available online 12 January 2005

Abstract

The organotin(IV) complexes $\mathrm{R}_{2} \mathrm{Sn}(\mathrm{tpu})_{2} \cdot \mathrm{~L}\left[\mathrm{~L}=2 \mathrm{MeOH}, \mathrm{R}=\mathrm{Me}(\mathbf{1}) ; \mathrm{L}=0: \mathrm{R}=n-\mathrm{Bu}(\mathbf{2}), \mathrm{Ph}(\mathbf{3}), \mathrm{PhCH}_{2}(\mathbf{4})\right], \mathrm{R}_{3} \mathrm{Sn}(\mathrm{Hthpu})$ $\left[\mathrm{R}=\mathrm{Me}(\mathbf{5}), n-\mathrm{Bu}(\mathbf{6}), \mathrm{Ph}(\mathbf{7}), \mathrm{PhCH}_{2}(\mathbf{8})\right]$ and $\left(\mathrm{R}_{2} \mathrm{SnCl}_{2}(\mathrm{dtpu}) \cdot \mathrm{L}\left[\mathrm{L}=\mathrm{H}_{2} \mathrm{O}, \mathrm{R}=\mathrm{Me}(\mathbf{9}) ; \mathrm{L}=0: \mathrm{R}=n-\mathrm{Bu}(\mathbf{1 0}), \mathrm{Ph}(\mathbf{1 1}), \mathrm{PhCH}_{2}\right.\right.$ (12)] have been synthesized, where tpu, Hthpu and dtpu are the anions of 6-thiopurine (Htpu), 2-thio-6-hydroxypurine (H_{2} thpu) and 2,6-dithiopurine ($\mathrm{H}_{2} \mathrm{dtpu}$), respectively. All the complexes $\mathbf{1 - 1 2}$ have been characterized by elemental, IR, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{119} \mathrm{Sn}$ NMR spectra analyses. And complexes 1, 2, 7 and 9 have also been determined by X-ray crystallography, complexes 1 and 2 are both six-coordinated with $\mathrm{R}_{2} \mathrm{Sn}$ coordinated to the thiol/thione S and heterocyclic N atoms but the coordination modes differed. As for complex $\mathbf{7}$ and $\mathbf{9}$, the geometries of Sn atoms are distorted trigonal bipyramidal. Moreover, the packing of complexes 1, 2, $\mathbf{7}$ and 9 are stabilized by the hydrogen bonding and weak interactions. © 2005 Elsevier B.V. All rights reserved.

Keywords: 6-Thiopurine; Organotin(IV); Coordination modes

1. Introduction

Organotin(IV) compounds are attracting more and more attention for their potential industrial applications and biological activities [1]. Recently, increasing investigation on organotin(IV) complexes has been focused on acquiring well-defined solid-state structures to learn the nature of their versatile bonding modes [2], especially that of some organotin(IV) derivatives from heterocyclic thionates [3]. Heterocyclic thionates are ligands derived from heterocyclic thiones that contain at least one deprotonated heterocyclic thioamide group ($\mathrm{N}-\mathrm{C}-\mathrm{S}$) ${ }^{-}$ and can act as monodentate, chelating and bridging ligands. Among them, due to the versatile coordination modes and effective biological activities, derivatives

[^0]from purine caught our attractions [4], for example, 6thiopurine (Htpu), 2-thio-6-hydroxypurine (H_{2} thpu) and 2,6-dithiopurine ($\mathrm{H}_{2} \mathrm{dtpu}$) (see Scheme 1).

Htpu, which is an anticancer antimetabolite (inter alia) proved to be clinically effective against human leukemias [5]. The Htpu ligand is interesting also because of it has multiple binding sites such as $\mathrm{N}^{1}, \mathrm{~N}^{3}, \mathrm{~S}^{6}, \mathrm{~N}^{7}$ and N^{9}, when it coordinates to tin atom, the coordination modes are certainly versatile (see Scheme 2). If coordination occurs through the S site, there may be two isomerism between thiol and thione form (mode \mathbf{A} and $\mathbf{B})$ [6]. While if as a N,S-chelating ligand, two nitrogen atoms (N^{1} and N^{7}) will compete to involve the coordination to the center tin atom. The final structure will depend on the stability of the $\mathrm{N}^{1} / \mathrm{S}^{6}$ (mode \mathbf{C}) or $\mathrm{S}^{6} / \mathrm{N}^{7}$ (mode D) and different alkyl groups of organotin compounds [6,7]. For instance, in $\mathrm{Me}_{3} \mathrm{Sn}(\mathrm{tpu})$, Htpu adopted mode \mathbf{E} to coordinate to tin atoms, and formed a polymeric trigonal bipyramidal structure [6]. While in

Scheme 1.
$\mathrm{Bz}_{3} \mathrm{Sn}(\mathrm{tpu}) \mathrm{SnBz}_{3} \mathrm{OMe}$, Htpu adopted mode \mathbf{F} to coordinate to tin atoms, and displayed a binuclear structure [3e]. As far as in $n-\mathrm{Bu}_{2} \operatorname{Sn}(\mathrm{tpu})_{2}$, Htpu adopted mode D to coordinate to tin atom [6].

In our previous work, we have studied the coordination behavior of five- and six-membered thiol/thione heterocycles to organotin(IV) [8,9]. As an extension of this research program and in connection with our current interest in the coordination chemistry of organotin(IV) compounds with heterocyclic thionates, we choose three fascinating ligands: Htpu, H_{2} thpu and $\mathrm{H}_{2} \mathrm{dtpu}$. We synthesized a series of complexes, $\mathrm{R}_{2} \mathrm{Sn}(\mathrm{tpu})_{2} \cdot \mathrm{~L}[\mathrm{~L}=2 \mathrm{MeOH}, \mathrm{R}=\mathrm{Me}(\mathbf{1}) ; \mathrm{L}=0: \mathrm{R}=n-$ Bu (2), Ph (3), PhCH_{2} (4) $], \mathrm{R}_{3} \mathrm{Sn}(\mathrm{Hthpu})[\mathrm{R}=\mathrm{Me}$ (5), $\left.n-\mathrm{Bu}(6), \mathrm{Ph}(7), \mathrm{PhCH}_{2}(8)\right]$ and $\left(\mathrm{R}_{2} \mathrm{SnCl}\right)_{2}(\mathrm{dtpu}) \cdot \mathrm{L}$ $\left[\mathrm{L}=\mathrm{H}_{2} \mathrm{O}, \mathrm{R}=\mathrm{Me}(9) ; \mathrm{L}=0: \mathrm{R}=n-\mathrm{Bu}(10)\right.$, $\mathrm{Ph}(11)$, $\left.\mathrm{PhCH}_{2}(12)\right]$. All the complexes $\mathbf{1}-\mathbf{1 2}$ have been characterized by elemental, IR, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{119} \mathrm{Sn}$ NMR spectra analyses. And complexes 1, 2, 7 and 9 have also been determined by X-ray crystallography.

2. Results and discussion

2.1. Syntheses

The organotin(IV) derivatives were obtained by reacting stoichiometric amounts of the thiopurine, sodium methoxide and corresponding organotin chlorides. The syntheses procedure is given in Scheme 3.

As shown in above Scheme, complexes 1-4 were synthesized by using a 1:2:2 molar ratio of $\mathrm{R}_{2} \mathrm{SnCl}_{2}: \mathrm{Htpu}: \mathrm{MeONa}$. When using a $1: 1: 1$ molar ratio of $\mathrm{R}_{3} \mathrm{SnCl}: \mathrm{H}_{2}$ thpu:MeONa, complexes $\mathbf{5 - 8}$ were obtained. It is worthy to note that despite using a 1:1:2 molar ratio of $\mathrm{R}_{2} \mathrm{SnCl}_{2}: \mathrm{H}_{2} \mathrm{dtpu}: \mathrm{MeONa}$ in the syntheses of complexes $9-\mathbf{1 2}$, we obtained $2: 1\left(\mathrm{R}_{2} \mathrm{SnCl}_{2}\right.$:
$\mathrm{H}_{2} \mathrm{dtpu}$) products with only one chloride atom of $\mathrm{R}_{2} \mathrm{SnCl}_{2}$ replaced.

2.2. IR spectra

The IR spectra of organotin complexes $\mathbf{1} \mathbf{- 1 2}$ are summarized in Table 1. The data show that the medium absorption at $1150 \mathrm{~cm}^{-1}$ in free ligands due to the $\mathrm{C}=\mathrm{S}$ is absent in spectra of all complexes $\mathbf{1}$ and $\mathbf{3}-\mathbf{1 2}$, while new absorption appears $700-800 \mathrm{~cm}^{-1}$ region which have been assignable to $v(\mathrm{C}-\mathrm{S})$ according to literature [3d], suggesting the coordinates of ligands involved in these complexes are through sulfur atoms via thiolate form. However, the two absorptions at 1224 and $782 \mathrm{~cm}^{-1}$ coexist in the spectrum of the complex 2 , which have been assigned to $v(\mathrm{C}=\mathrm{S})$ and $v(\mathrm{C}-\mathrm{S})$, respectively, indicating that the two chelating ligand act as thiol and thione forms, respectively. In the far-IR spectra, the absorption in $305-312 \mathrm{~cm}^{-1}$ region for all complexes $\mathbf{1}-\mathbf{1 2}$, which is absent in the spectra of the free ligands, is assigned to the $v(\mathrm{Sn}-\mathrm{S})$ and all the values are located within the range for $\mathrm{Sn}-\mathrm{S}$ vibration observed in common organotin derivatives of thiolate (300$400 \mathrm{~cm}^{-1}$) [10]. The $v(\mathrm{Sn}-\mathrm{Cl})$ absorption at about $290 \mathrm{~cm}^{-1}$ in complexes $\mathbf{9 - 1 2}$ is close to that found in (S-dimethylchlorostannyl)-1-phenyl-5-thiotetrazole $\left(300 \mathrm{~cm}^{-1}\right)$ [11], which suggests the incomplete substituent of chloride atoms of $\mathrm{R}_{2} \mathrm{SnCl}_{2}$. In organotin compounds, the IR spectra can provide useful information concerning the geometry of the SnC_{n} moiety [12]. In the case of our complexes, for both di- and triorganotin(IV) derivatives, two bands were assigned to asymmetric and symmetric $\mathrm{Sn}-\mathrm{C}$ vibrations. Thus suggesting non-linear SnC_{2} units for diorganotins and non-planar SnC_{3} fragments for triorganotins, respectively.

2.3. NMR spectra

The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{119} \mathrm{Sn}$ NMR spectral data are collected in Table 2. The ${ }^{1} \mathrm{H}$ NMR data show that the chemical shifts of the phenyl group $\left(\mathrm{Sn}-\mathrm{C}_{6} \mathrm{H}_{5}\right)$ in complexes 3, 7 and 11, $7.36-7.80 \mathrm{ppm}$, and those of methyl or methylene connected directly with tin in other complexes, $0.74-3.61 \mathrm{ppm}$, low frequency shift as compared

A

B

C

D

E

F

Scheme 2.

$[\mathrm{L}=0: \mathrm{R}=n-\mathrm{Bu}(\mathbf{2})]$

$\left[\mathrm{R}=\mathrm{Me}(\mathbf{5}), n-\mathrm{Bu}(6), \mathrm{Ph}(7), \mathrm{PhCH}_{2}(8)\right]$

$\left[\mathrm{L}=\mathrm{H}_{2} \mathrm{O}, \mathrm{R}=\mathrm{Me}(\mathbf{9}) ; \mathrm{L}=0: \mathrm{R}=n-\mathrm{Bu}(\mathbf{1 0}), \mathrm{Ph}(\mathbf{1 1}), \mathrm{PhCH}_{2}(\mathbf{1 2})\right]$

Scheme 3 .

Table 1
Some relevant infrared spectral data $\left(\mathrm{cm}^{-1}\right)$ for organotin(IV) complexes of $\mathrm{Htpu}, \mathrm{H}_{2}$ thpu and $\mathrm{H}_{2} \mathrm{dtpu}$

Complex	$v(\mathrm{C}-\mathrm{S})$	$v_{\text {as }}(\mathrm{Sn}-\mathrm{C})$	$v_{\mathrm{s}}(\mathrm{Sn}-\mathrm{C})$	$v(\mathrm{Sn}-\mathrm{S})$	Others
$\mathrm{Me}_{2} \mathrm{Sn}(\mathrm{tpu})_{2} \cdot 2 \mathrm{MeOH}(\mathbf{1})$	757	550	517	305	3427, $v(\mathrm{O}-\mathrm{H})$
$(\mathrm{n}-\mathrm{Bu})_{2} \mathrm{Sn}(\mathrm{tpu})_{2}(\mathbf{2})$	782	442	424	310	1224, $v(\mathrm{C}=\mathrm{S})$
$(\mathrm{Ph})_{2} \mathrm{Sn}(\mathrm{tpu})_{2}(3)$	750	532	507	311	-
$\left(\mathrm{PhCH}_{2}\right)_{2} \mathrm{Sn}(\mathrm{tpu})_{2}(4)$	732	452	427	307	-
$\mathrm{Me}_{3} \mathrm{Sn}$ (Hthpu) (5)	704	535	504	305	$3429, v(\mathrm{O}-\mathrm{H})$
$(\mathrm{n}-\mathrm{Bu})_{3} \mathrm{Sn}(\mathrm{Hthpu})_{2}(\mathbf{6})$	712	449	425	310	$3425, v(\mathrm{O}-\mathrm{H})$
$\mathrm{Ph}_{3} \mathrm{Sn}(\mathrm{Hthpu})(7)$	704	543	525	305	$3430, v(\mathrm{O}-\mathrm{H})$
$\left(\mathrm{PhCH}_{2}\right)_{3} \mathrm{Sn}(\mathrm{Hthpu})(\mathbf{8})$	697	535	461	312	$3426, v(\mathrm{O}-\mathrm{H})$
$\left(\mathrm{Me}_{2} \mathrm{SnCl}\right)_{2}(\mathrm{dtpu}) \cdot \mathrm{H}_{2} \mathrm{O}(9)$	791	558	519	312	$3429, v(\mathrm{O}-\mathrm{H}) ; 289, v(\mathrm{Sn}-\mathrm{Cl})$
$\left(n-\mathrm{Bu}_{2} \mathrm{SnCl}\right)_{2}(\mathrm{dtpu})(10)$	789	551	525	310	286, $v(\mathrm{Sn}-\mathrm{Cl})$
$\left(\mathrm{Ph}_{2} \mathrm{SnCl}\right)_{2}(\mathrm{dtpu})(11)$	790	555	500	305	285, $v(\mathrm{Sn}-\mathrm{Cl})$
$\left[\left(\mathrm{PhCH}_{2}\right)_{2} \mathrm{SnCl}\right]_{2}(\mathrm{dtpu})(\mathbf{1 2)}$	790	543	514	308	281, $v(\mathrm{Sn}-\mathrm{Cl})$

with those of their corresponding precursors. All these data are similar to those cases appear in literature [13], indicating coordination of the ligand to tin atom occurred for all the complexes $\mathbf{1 - 1 2}$.

The structural changes occurring in ligand upon deprotonation and coordination to the Sn atom should be reflected by the changes in the ${ }^{13} \mathrm{C}$ NMR spectra of our complexes If the initial thione form of ligand changes to the thiolate on complexation, C^{2} and/or C^{6}
should be further low frequency in the spectra of all complexes compared with those in free ligands, the shielding effect of the $\mathrm{C}=\mathrm{N}$ bond being greater than that of the $\mathrm{C}=\mathrm{S}$ bond [14]. As shown in Table 2, C^{6} atom of complex 2 shows two signals ($\delta 170.7,160.5$), one is similar to that of free ligand (δ 169.5) and the other is shifted by 9 ppm to low frequency compared with it, indicating that two tpu act as thiolate and thione forms, respectively. Moreover, C^{2} and/or C^{6} atom signals of
${ }^{\text {Table }}{ }^{1} \mathrm{H}{ }^{13}{ }^{13} \mathrm{C}$ and ${ }^{119} \mathrm{Sn}$ NMR spectral data (δ) for organotin(IV) complexes of $\mathrm{Htpu}, \mathrm{H}_{2}$ thpu and $\mathrm{H}_{2} \mathrm{dtpu}$

Complex	${ }^{13} \mathrm{C}$ NMR		${ }^{1} \mathrm{H}$ NMR		${ }^{119} \mathrm{Sn}$ NMR
	Purine ring	$\mathrm{R}_{n}-\mathrm{Sn}$	Purine ring	$\mathrm{R}_{n}-\mathrm{Sn}$	
$\mathrm{Me}_{2} \mathrm{Sn}(\mathrm{tpu})_{2} \cdot 2 \mathrm{MeOH}(\mathbf{1})$	$151.2\left(C^{2}\right), 144.7$ ($\left.\mathrm{C}^{4}\right), 127.8\left(\mathrm{C}^{5}\right), 162.1\left(\mathrm{C}^{6}\right), 144.4$ ($\left.\mathrm{C}^{8}\right)$	8.1, $49.9\left(\mathrm{CH}_{3} \mathrm{OH}\right)$	8.22 (s, 2H), 8.01 (s, 2H)	1.43 (s, 6H), 3.40 (s, 6H, $\mathrm{CH}_{3} \mathrm{OH}$)	68.3
$(n-\mathrm{Bu})_{2} \mathrm{Sn}(\mathrm{tpu})_{2}(\mathbf{2})$	$\begin{aligned} & 149.2\left(\mathrm{C}^{2}\right), 144.8,151.3\left(\mathrm{C}^{4}\right), 127.7,136.5\left(\mathrm{C}^{5}\right), 170.7 \text {, } \\ & 160.5\left(\mathrm{C}^{6}\right), 144.5,147.4\left(\mathrm{C}^{8}\right) \end{aligned}$	28.2, 27.6, 26.0, 13.4	$8.21(\mathrm{~s}, 2 \mathrm{H}), 8.00$ ($\mathrm{s}, 2 \mathrm{H})$	0.91-2.10 (m, 18H)	50.8
$(\mathrm{Ph})_{2} \mathrm{Sn}(\mathrm{tpu})_{2}(3)$	$150.2\left(C^{2}\right), 144.8\left(C^{4}\right), 127.5\left(C^{5}\right), 165.0\left(C^{6}\right), 144.5$ (C^{8})	$\begin{aligned} & 138.9\left(\mathrm{C}_{o}\right), 135.5\left(\mathrm{C}_{m}\right), \\ & 129.2\left(\mathrm{C}_{p}\right), 131.8\left(\mathrm{C}_{i}\right) \end{aligned}$	8.19 (s, 2H), 8.02 (s, 2H)	$7.47-7.80$ (m, 10H)	-82.1
$\left(\mathrm{PhCH}_{2}\right)_{2} \mathrm{Sn}(\mathrm{tpu})_{2}(4)$	150.6 (C^{2}), 145.1 (C^{4}), $127.3\left(\mathrm{C}^{5}\right), 160.6\left(\mathrm{C}^{6}\right), 142.2$ ($\left.\mathrm{C}^{8}\right)$	$\begin{aligned} & 123.5\left(\mathrm{C}_{o}\right), 128.2\left(\mathrm{C}_{m}\right), \\ & 128.9\left(\mathrm{C}_{p}\right), 138.1\left(\mathrm{C}_{i}\right), 23.6 \end{aligned}$	8.25 (s, 2H), 8.01 ($\mathrm{s}, 2 \mathrm{H})$	6.95-7.32 (m, 10H), 3.50 (s, 4H)	63.1
$\mathrm{Me}_{3} \mathrm{Sn}(\mathrm{Hthpu})(5)$	$171.5\left(\mathrm{C}^{2}\right), 152.0$ (C^{4}), $117.8\left(\mathrm{C}^{5}\right), 166.5\left(\mathrm{C}^{6}\right), 136.1$ ($\left.\mathrm{C}^{8}\right)$	8.12	8.05 ($\mathrm{s}, 1 \mathrm{H})$	0.74 (s, 9H)	119.4
$(n-\mathrm{Bu})_{3} \mathrm{Sn}(\mathrm{Hthpu})_{2}(6)$	172.6 (C^{2}), $151.8\left(\mathrm{C}^{4}\right), 117.3$ (C^{5}), 167.2 ($\left.\mathrm{C}^{6}\right)$, 136.4 ($\left.\mathrm{C}^{8}\right)$	28.3, 27.5, 26.4, 13.5	8.14 (s, 1H)	0.86-1.70 (m, 27H)	120.3
$\mathrm{Ph}_{3} \mathrm{Sn}(\mathrm{Hthpu})$ (7)	171.6 (C^{2}), 152.5 (C^{4}), 117.6 (C^{5}), 166.9 ($\left.\mathrm{C}^{6}\right)$, 136.4 ($\left.\mathrm{C}^{8}\right)$	$\begin{aligned} & 136.4\left(\mathrm{C}_{o}\right), 128.6\left(\mathrm{C}_{m}\right), \\ & 129.2\left(\mathrm{C}_{p}\right), 148.2\left(\mathrm{C}_{i}\right) \end{aligned}$	8.05 ($\mathrm{s}, 1 \mathrm{H})$	7.45-7.80 (m, 15H)	-63.4
$\left(\mathrm{PhCH}_{2}\right)_{3} \mathrm{Sn}(\mathrm{Hthpu})(\mathbf{8})$	$172.2\left(\mathrm{C}^{2}\right), 153.5\left(\mathrm{C}^{4}\right), 116.4\left(\mathrm{C}^{5}\right), 167.0\left(\mathrm{C}^{6}\right)$, $136.4\left(\mathrm{C}^{8}\right)$	$\begin{aligned} & 123.8\left(\mathrm{C}_{o}\right), 128.1\left(\mathrm{C}_{m}\right), \\ & 128.8\left(\mathrm{C}_{p}\right), 138.2\left(\mathrm{C}_{i}\right), 24.7 \end{aligned}$	8.07 (s, 1H)	6.85-7.17 (m, 15H), 2.68 (s, 6H)	96.6
$\left(\mathrm{Me}_{2} \mathrm{SnCl}_{2}(\mathrm{dtpu}) \cdot \mathrm{H}_{2} \mathrm{O}(9)\right.$	170.3 (C^{2}), 156.7 (C^{4}), $130.1\left(\mathrm{C}^{5}\right), 162.1\left(\mathrm{C}^{6}\right), 148.9$ ($\left.\mathrm{C}^{8}\right)$	7.7	8.03 (s, 1H)	1.35 (s, 12H)	-77.9
$\left(n-\mathrm{Bu}_{2} \mathrm{SnCl}_{2}(\mathrm{dtpu})(\mathbf{1 0)}\right.$	170.6 (C^{2}), 155.0 (C^{4}), $131.2\left(\mathrm{C}^{5}\right)$, 161.1 ($\left.\mathrm{C}^{6}\right), 148.8$ ($\left.\mathrm{C}^{8}\right)$	28.2, 27.7, 25.9, 13.5	7.89 (s, 1H)	0.83-2.15 (m, 36H)	-72.3
$\left(\mathrm{Ph}_{2} \mathrm{SnCl}_{2} \mathrm{C}_{2} \mathrm{dtpu}\right)(11)$	172.3 (C^{2}), 157.6 (C^{4}), 132.0 ($\left.\mathrm{C}^{5}\right), 162.3$ ($\left.\mathrm{C}^{6}\right), 148.5$ ($\left.\mathrm{C}^{8}\right)$	$\begin{aligned} & 134.8\left(\mathrm{C}_{o}\right), 128.7\left(\mathrm{C}_{m}\right), \\ & 129.3\left(\mathrm{C}_{p}\right), 148.6\left(\mathrm{C}_{i}\right) \end{aligned}$	8.08 (s, 1H)	7.36-7.79 (m, 20H)	-84.8
$\left[\left(\mathrm{PhCH}_{2}\right)_{2} \mathrm{SnCl}_{2}\left(\right.\right.$ (dpu) ${ }_{(12)}$	$170.5\left(\mathrm{C}^{2}\right), 155.7\left(\mathrm{C}^{4}\right), 132.0\left(\mathrm{C}^{5}\right), 163.4\left(\mathrm{C}^{6}\right), 147.5\left(\mathrm{C}^{8}\right)$	$\begin{aligned} & 127.5\left(\mathrm{C}_{o}\right), 127.3\left(\mathrm{C}_{m}\right), \\ & 128.5\left(\mathrm{C}_{p}\right), 138.7\left(\mathrm{C}_{i}\right), 26.3 \\ & \hline \end{aligned}$	8.25 (s, 1H)	6.85-7.22 (m, 20H), $3.61(\mathrm{~s}, 8 \mathrm{H})$	-65.7

complexes $\mathbf{1}$ and $\mathbf{3 - 1 2}$ are shifted by $5-15 \mathrm{ppm}$ to low frequency compared with those of free ligands, suggesting the ligands involved in these complexes act as thiolate form.

From the ${ }^{13} \mathrm{C}$ NMR spectra, we can also obtain useful information about the actual linkage isomerism of ligands. According to the literature, if the thiopurine coordinate to tin atom by the mode \mathbf{D}, the signal of the C^{5} atom will high frequency shift compared with that of free ligand [15]. For complexes 1, 3 and 4, the C^{5} signals are located at $\delta 127.3-127.8$ region, much close to that of free Htpu ($\delta 128.4$), suggesting no mode \mathbf{D} involved in these complexes. While, for the complex 2, two signals for C^{5} appear at $\delta 127.7$ and 136.5. Together with the signal of $\mathrm{C}^{4}(\delta 144.8$ and 151.3), the information indicates that N^{7} atoms in complex 2 exist in two different environment, one is similar to that in free ligand and the other is consistent with that adopts coordination mode D. Both the C^{5} and C^{4} signals of complexes $\mathbf{9 - 1 2}$ (as shown in Table 2) are shifted by $10-20 \mathrm{ppm}$ to high frequency compared with that of $\mathrm{H}_{2} \mathrm{dtpu}$. This fact means that complexes $\mathbf{9} \mathbf{- 1 2}$ all adopt the chelating mode \mathbf{D}. All of above analyses are confirmed by X-ray diffraction.

As reported in literatures [16], values of $\delta\left({ }^{119} \mathrm{Sn}\right)$ in the ranges -210 to $-400,-90$ to -190 and 200 to -60 ppm have been associated with six-, five- and four-coordinate tin centers, respectively. The $\delta\left({ }^{119} \mathrm{Sn}\right)$ values of $\mathbf{1 - 4}$ [68.3 (1), 50.8 (2), -82.1 (3) and 63.1 (4)] are intermediate between those of four-coordinated diorganotin dithiolates $\left[\delta\left({ }^{119} \mathrm{Sn}\right) 122-144 \mathrm{ppm}\right]$ and sixcoordinated diorganotin bis(dithiocarbamates) [e.g., $\mathrm{Me}_{2} \mathrm{Sn}\left(\mathrm{SCSNEt}_{2}\right)_{2}, \delta\left({ }^{119} \mathrm{Sn}\right)-336 \mathrm{ppm}$ [[17]. All these revealed expanded coordination geometry about tin in solution. The ${ }^{119} \mathrm{Sn}$ NMR spectra of $5-\mathbf{8}$ show only one sharp signal, and the δ values found (119.4, 120.3, -63.4 and 96.6 ppm , respectively) are consistent with a tetrahedral and monomeric structure in solution. Besides, the ${ }^{119} \mathrm{Sn}$ NMR chemical shifts of $\mathbf{9 - 1 2}$ are in accordance with those of five coordinate diorganotin(IV) halides complexes involving halide or phosphine ligands [18], as well as chelating S-donors and O-donors complexes $[19,20]$. Thus, the $\delta\left({ }^{119} \mathrm{Sn}\right)$ values of $\mathbf{9 - 1 2}$ $[-77.9$ (9), $-72.3(\mathbf{1 0}),-84.8(\mathbf{1 1})$ and -65.7 (12)] suggest that the $\mathrm{Sn}-\mathrm{N}$ interactions probably survive in solution and that five-coordinate species is maintained.

2.4. Description of crystal structures

2.4.1. $\mathrm{Me}_{2} \mathrm{Sn}(\mathrm{tpu})_{2} \cdot 2 \mathrm{MeOH}$ (1)

The molecular structure of complex $\mathbf{1}$ is shown in Fig. 1 , selected bond lengths and angles are given in Table 3. There exists crystallographic twofold axe in the complex 1. Thus, two $\mathrm{Sn}-\mathrm{S}$ and $\mathrm{Sn}-\mathrm{N}$ bonds are identical, respectively, due to the symmetric operation. The tin atom establishes covalent bonds with the two thiolate sulfur

Fig. 1. Molecular structure of the complex 1.

Table 3
Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for $\mathbf{1}$

$\mathrm{Sn}(1)-\mathrm{C}(6)$	$2.104(7)$	$\mathrm{N}(3)-\mathrm{C}(4)$	$1.330(7)$
$\mathrm{Sn}(1)-\mathrm{C}(7)$	$2.109(7)$	$\mathrm{N}(3)-\mathrm{C}(3)$	$1.337(6)$
$\mathrm{Sn}(1)-\mathrm{S}(1)$	$2.497(2)$	$\mathrm{N}(4)-\mathrm{C}(5)$	$1.319(10)$
$\mathrm{Sn}(1)-\mathrm{N}(3)$	$2.718(6)$	$\mathrm{N}(4)-\mathrm{C}(4)$	$1.329(6)$
$\mathrm{N}(1)-\mathrm{C}(1)$	$1.349(7)$	$\mathrm{O}(1)-\mathrm{C}(8)$	$1.390(7)$
$\mathrm{N}(1)-\mathrm{C}(5)$	$1.377(7)$	$\mathrm{S}(1)-\mathrm{C}(3)$	$1.733(6)$
$\mathrm{N}(2)-\mathrm{C}(1)$	$1.319(7)$	$\mathrm{C}(2)-\mathrm{C}(5)$	$1.392(8)$
$\mathrm{N}(2)-\mathrm{C}(2)$	$1.372(6)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.408(8)$
$\mathrm{C}(6)-\mathrm{Sn}(1)-\mathrm{C}(7)$	$130.5(4)$	$\mathrm{S}(1)-\mathrm{Sn}(1)-\mathrm{S}(1 \mathrm{~A})$	$87.27(10)$
$\mathrm{C}(6)-\mathrm{Sn}(1)-\mathrm{S}(1)$	$106.5(3)$	$\mathrm{C}(6)-\mathrm{Sn}(1)-\mathrm{N}(3)$	$85.05(13)$
$\mathrm{C}(7)-\mathrm{Sn}(1)-\mathrm{S}(1)$	$108.73(19)$	$\mathrm{C}(7)-\mathrm{Sn}(1)-\mathrm{N}(3)$	$83.09(12)$
$\mathrm{C}(6)-\mathrm{Sn}(1)-\mathrm{S}(1 \mathrm{~A})$	$106.5(3)$	$\mathrm{S}(1)-\mathrm{Sn}(1)-\mathrm{N}(3)$	$60.67(14)$
$\mathrm{C}(7)-\mathrm{Sn}(1)-\mathrm{S}(1 \mathrm{~A})$	$108.73(19)$	$\mathrm{S}(1 \mathrm{~A})-\mathrm{Sn}(1)-\mathrm{N}(3)$	$147.94(12)$

atoms and weak connections with two heterocyclic nitrogen atoms ($\mathrm{N}(3), \mathrm{N}(3 \mathrm{~A})$) of the ligand (mode \mathbf{C}). The $\mathrm{Sn}-\mathrm{S}$ bond distances (2.497(2) \AA) are very close to the sum of the corresponding covalent radii $(2.42 \AA)$ [21], similar to the distances found in other $\operatorname{Sn}(\mathrm{IV})$ complexes of the terazolethiolato with metal-sulfur primary bonds, viz. $2.474(3)-2.614(5) \AA[11,22]$. The $\mathrm{Sn}-\mathrm{N}$ bond lengths are markedly shorter $[\operatorname{Sn}(1)-\mathrm{N}(3) 2.718(6) \AA]$ than those reported in diorganotin derivatives of 1-phe-nyl-1 H -tetrazole-5-thilato (2.975(5) [22c] and 2.947(4) \AA [23]), all of which lie within the sum of their respective van der Walls radii ($3.74 \AA$) [24]. These information suggests that the ligand Htpu adopts mode \mathbf{C} to coordinate tin atom.

Including the intramolecular tin-nitrogen interactions, the geometry of center tin atom thus becomes
skew-trapezoidal bipyramidal with the two methyl carbons in bent axial positions and the plane being defined by the two $\mathrm{Sn}-\mathrm{S}$ covalent bonds and the two $\mathrm{Sn}-\mathrm{N}$ secondary interactions. The $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ angle is $130.5(4)^{\circ}$. The two sulfur atoms occupy cis-positions with the $\mathrm{S}-\mathrm{Sn}-\mathrm{S}$ angle, $87.27(10)^{\circ}$.

It is worth to note that the component $\mathrm{Me}_{2} \mathrm{Sn}(\mathrm{tpu})_{2}$ crystallizes with two molecules of methanol and through the hydrogen bonding between them the supramolecular structure of complex 1 becomes a 2D network (Fig. 2). The methanol molecules involve in two hydrogen bonds, acting as a donor $(\mathrm{O}(1)-\mathrm{H}(1 \mathrm{~B}) \cdots \mathrm{N}(2) 2.741(6) \AA$, $\mathrm{O}(1)-$ $\mathrm{H}(1 \mathrm{~B})-\mathrm{N}(2) 164.13^{\circ}$) as well as an acceptor ($\mathrm{N}(1)-$ $\left.\mathrm{H}(1 \mathrm{~A}) \cdots \mathrm{O}(1) 2.724(6) \AA, \mathrm{N}(1)-\mathrm{H}(1 \mathrm{~A})-\mathrm{O}(1) 171.77^{\circ}\right)$.

2.4.2. $(n-B u)_{2} S n(t p u)_{2}$ (2)

For complex 2, the asymmetric unit contains two monomers A and B (see Fig. 3), which are crystallographically non-equivalent. The conformations of the two independent molecules A and B are almost the same, with only small differences in bond lengths and bond angles (see Table 4). The geometry at tin atom in the complex 2 is distorted octahedral with the two methylene carbons in axial positions and the equatorial plane being defined by two S atoms and two N atoms. Two $\mathrm{Sn}-\mathrm{S}$ bonds and two $\mathrm{Sn}-\mathrm{N}$ bonds form around each tin atom but the two $\mathrm{Sn}-\mathrm{S}$ bond lengths are much distinct and the same case occurs for $\mathrm{Sn}-\mathrm{N}$ bond lengths. The shorter $\mathrm{Sn}-\mathrm{S}$ bond $(\mathrm{Sn}(1)-\mathrm{S}(1) 2.529(2) \AA$ for A and $\operatorname{Sn}(2)-S(3) 2.514(2) \AA$ for $B)$ is close to the sum of the covalent radii of tin and sulfur atoms $(2.42 \AA)$) [21],

Fig. 2. Perspective view showing the 2 D network of the complex 1 .

Fig. 3. Molecular structure of the complex 2.

Table 4
Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for 2

Molecule A		Molecule B	
$\operatorname{Sn}(1)-\mathrm{C}(11)$	2.117(8)	$\mathrm{Sn}(2)-\mathrm{C}(33)$	2.095(9)
$\operatorname{Sn}(1)-\mathrm{C}(15)$	2.147(8)	$\mathrm{Sn}(2)-\mathrm{C}(29)$	2.137(8)
$\mathrm{Sn}(1)-\mathrm{N}(8)$	$2.196(5)$	$\mathrm{Sn}(2)-\mathrm{N}(16)$	2.209 (5)
$\mathrm{Sn}(1)-\mathrm{S}(1)$	2.529(2)	$\mathrm{Sn}(2)-\mathrm{S}(3)$	2.514(2)
$\mathrm{Sn}(1)-\mathrm{N}(1)$	$2.725(5)$	$\mathrm{Sn}(2)-\mathrm{N}(9)$	2.660 (5)
$\mathrm{Sn}(1)-\mathrm{S}(2)$	3.123(2)	$\mathrm{Sn}(2)-\mathrm{S}(4)$	3.128(2)
$\mathrm{N}(1)-\mathrm{C}(1)$	1.336(8)	$\mathrm{N}(9)-\mathrm{C}(20)$	1.328(8)
$\mathrm{N}(1)-\mathrm{C}(2)$	1.361(8)	$\mathrm{N}(9)-\mathrm{C}(19)$	1.339(8)
$\mathrm{N}(2)-\mathrm{C}(2)$	1.290 (8)	$\mathrm{N}(10)-\mathrm{C}(21)$	1.331(7)
$\mathrm{N}(2)-\mathrm{C}(3)$	$1.334(8)$	$\mathrm{N}(10)-\mathrm{C}(20)$	$1.302(8)$
$\mathrm{N}(3)-\mathrm{C}(4)$	$1.308(8)$	$\mathrm{N}(11)-\mathrm{C}(22)$	1.320 (8)
$\mathrm{N}(3)-\mathrm{C}(3)$	$1.355(8)$	$\mathrm{N}(11)-\mathrm{C}(21)$	$1.372(8)$
$\mathrm{N}(4)-\mathrm{C}(4)$	1.342(8)	$\mathrm{N}(12)-\mathrm{C}(22)$	1.341(8)
$\mathrm{N}(4)-\mathrm{C}(5)$	$1.373(7)$	$\mathrm{N}(12)-\mathrm{C}(23)$	1.361(8)
$\mathrm{N}(5)-\mathrm{C}(7)$	1.327(8)	$\mathrm{N}(13)-\mathrm{C}(25)$	$1.295(9)$
$\mathrm{N}(5)-\mathrm{C}(6)$	1.414(8)	$\mathrm{N}(13)-\mathrm{C}(24)$	1.396 (9)
$\mathrm{N}(6)-\mathrm{C}(7)$	1.322(8)	$\mathrm{N}(14)-\mathrm{C}(25)$	$1.335(9)$
$\mathrm{N}(6)-\mathrm{C}(8)$	1.347(8)	$\mathrm{N}(14)-\mathrm{C}(26)$	1.342(8)
$\mathrm{N}(7)-\mathrm{C}(9)$	1.316 (8)	$\mathrm{N}(15)-\mathrm{C}(27)$	1.308(8)
$\mathrm{N}(7)-\mathrm{C}(8)$	1.341(7)	$\mathrm{N}(15)-\mathrm{C}(26)$	$1.337(7)$
$\mathrm{N}(8)-\mathrm{C}(9)$	1.336 (8)	$\mathrm{N}(16)-\mathrm{C}(27)$	$1.328(8)$
$\mathrm{N}(8)-\mathrm{C}(10)$	1.358(7)	$\mathrm{N}(16)-\mathrm{C}(28)$	1.350 (8)
$\mathrm{S}(1)-\mathrm{C}(1)$	$1.732(6)$	$\mathrm{S}(3)-\mathrm{C}(19)$	1.740 (6)
$\mathrm{S}(2)-\mathrm{C}(6)$	1.681(7)	$\mathrm{S}(4)-\mathrm{C}(24)$	1.659(8)
$\mathrm{C}(11)-\mathrm{Sn}(1)-\mathrm{C}(15)$	143.7(3)	$\mathrm{C}(33)-\mathrm{Sn}(2)-\mathrm{C}(29)$	139.3(4)
$\mathrm{C}(11)-\mathrm{Sn}(1)-\mathrm{N}(8)$	103.1(3)	$\mathrm{C}(33)-\mathrm{Sn}(2)-\mathrm{N}(16)$	106.5(3)
$\mathrm{C}(15)-\mathrm{Sn}(1)-\mathrm{N}(8)$	104.4(3)	$\mathrm{C}(29)-\mathrm{Sn}(2)-\mathrm{N}(16)$	105.0(3)
$\mathrm{C}(11)-\mathrm{Sn}(1)-\mathrm{S}(1)$	102.0(2)	$\mathrm{C}(33)-\mathrm{Sn}(2)-\mathrm{S}(3)$	103.3(3)
$\mathrm{C}(15)-\mathrm{Sn}(1)-\mathrm{S}(1)$	103.9(2)	$\mathrm{C}(29)-\mathrm{Sn}(2)-\mathrm{S}(3)$	104.0(3)
$\mathrm{N}(8)-\mathrm{Sn}(1)-\mathrm{S}(1)$	84.40(14)	$\mathrm{N}(16)-\mathrm{Sn}(2)-\mathrm{S}(3)$	86.06(14)
$\mathrm{C}(11)-\mathrm{Sn}(1)-\mathrm{N}(1)$	84.3(3)	$\mathrm{C}(33)-\mathrm{Sn}(2)-\mathrm{N}(9)$	85.6(3)
$\mathrm{C}(15)-\mathrm{Sn}(1)-\mathrm{N}(1)$	87.0(3)	$\mathrm{C}(29)-\mathrm{Sn}(2)-\mathrm{N}(9)$	81.6(3)
$\mathrm{N}(8)-\mathrm{Sn}(1)-\mathrm{N}(1)$	144.29(17)	$\mathrm{N}(16)-\mathrm{Sn}(2)-\mathrm{N}(9)$	147.27(18)
$\mathrm{S}(1)-\mathrm{Sn}(1)-\mathrm{N}(1)$	59.93(12)	$\mathrm{S}(3)-\mathrm{Sn}(2)-\mathrm{N}(9)$	61.38(12)
$\mathrm{C}(11)-\mathrm{Sn}(1)-\mathrm{S}(2)$	84.8(2)	$\mathrm{C}(33)-\mathrm{Sn}(2)-\mathrm{S}(4)$	82.6(3)
$\mathrm{C}(15)-\mathrm{Sn}(1)-\mathrm{S}(2)$	82.0(2)	$\mathrm{C}(29)-\mathrm{Sn}(2)-\mathrm{S}(4)$	83.5(3)
$\mathrm{N}(8)-\mathrm{Sn}(1)-\mathrm{S}(2)$	71.31(14)	$\mathrm{N}(16)-\mathrm{Sn}(2)-\mathrm{S}(4)$	71.65(14)
$\mathrm{S}(1)-\mathrm{Sn}(1)-\mathrm{S}(2)$	155.69(5)	$\mathrm{S}(3)-\mathrm{Sn}(2)-\mathrm{S}(4)$	157.68(5)
$\mathrm{N}(1)-\mathrm{Sn}(1)-\mathrm{S}(2)$	144.38(11)	$\mathrm{N}(9)-\mathrm{Sn}(2)-\mathrm{S}(4)$	140.94(12)

while the longer one $(\operatorname{Sn}(1)-\mathrm{S}(2) 3.123(2) \AA$ for A and $\operatorname{Sn}(2)-S(4) 3.128(2) \AA$ for $B)$ is near to the sum of the van der Waals radii of the two atoms ($4.0 \AA$) [24]. Similarly, the shorter and the longer $\mathrm{Sn}-\mathrm{N}$ bond lengths $(\operatorname{Sn}(1)-\mathrm{N}(8) 2.196(5) \AA$ and $\mathrm{Sn}(1)-\mathrm{N}(1) 2.725(5) \AA$ for A, $\operatorname{Sn}(2)-N(16) 2.209(5) \AA$ and $\operatorname{Sn}(2)-N(9) 2.660(5) \AA$ for B) approach to the sum of the covalent radii $(2.15 \AA)$ and the van der Waals radii of tin and nitrogen atoms $(3.74 \AA$) [24], respectively. Furthermore, there are differences between two $\mathrm{C}-\mathrm{S}$ bonds $(\mathrm{S}(2)-\mathrm{C}(6)$ $1.681(7) \AA$ and $\mathrm{S}(1)-\mathrm{C}(1) 1.732(6) \AA$ for $\mathrm{A}, \mathrm{S}(4)-\mathrm{C}(24)$ $1.659(8) \AA$ and $S(3)-C(19) 1.740(6) \AA$ for B). The shorter $\mathrm{C}-\mathrm{S}$ bond length is near to that in thioureas $(1.681 \AA)$, suggesting its role as $\mathrm{C}=\mathrm{S}$ double bond. While the longer lies between the average value for the double $C=S$ bond in thioureas $(1.681 \AA)$ and the single $\mathrm{C}-\mathrm{S}$ bond in the $\mathrm{C}-$ S-Me fragment (1.789 A) [25], so that it can be regarded as $\mathrm{C}-\mathrm{S}$ single bond and also suggesting that it has some double-bond character. All these remarkable differences in $\mathrm{Sn}-\mathrm{S}, \mathrm{Sn}-\mathrm{N}$ and $\mathrm{C}-\mathrm{S}$ bond lengths reveal that the thiol and thione forms may be concurrent in the Htpu when it reacts with $n-\mathrm{Bu}_{2} \mathrm{SnCl}_{2}$. Thus we can conclude that two S, N-chelating ligand asymmetrically coordinate to the center tin atom, different from that of complex 1, which adopts modes \mathbf{C} and \mathbf{D} simultaneously. And the conclusion is complementary to Barbieri's prediction according to the data of infrared and Mössbauer spectroscopy [9].

In addition, intermolecular hydrogen bonding (N(7)$\mathrm{H}(7) \cdots \mathrm{N}(4) 2.766(7) \AA, \mathrm{N}(7)-\mathrm{H}(7)-\mathrm{N}(4) 164.87^{\circ}$ for A and $\mathrm{N}(15)-\mathrm{H}(15) \cdots \mathrm{N}(12) \quad 2.867(7) \AA, \quad \mathrm{N}(15)-\mathrm{H}(15)-$ $\mathrm{N}(12) 164.35^{\circ}$ for B) is recognized, which associates the discrete molecule into a dimer. Besides, both the hydrogen bonding and intermolecular non-bonded $\mathrm{N} \cdots \mathrm{N}$ interactions are noted in the complex 2, which help the construction of the 2D network (Fig. 4). The

Fig. 4. Perspective view showing the 2D network of the complex 2.
non-bonded $\mathrm{N} \cdots \mathrm{N}$ distances $(\mathrm{N}(2) \cdots \mathrm{N}(13)$ 2.772(8) \AA and $\mathrm{N}(5) \cdots \mathrm{N}(10) 2.794(8) \AA$) are shorter than the sum of the van der Waals radii of nitrogen and nitrogen (3.08 A) [21].

2.4.3. $\mathrm{Ph}_{3} \mathrm{Sn}(\mathrm{Hthpu})$ (7)

The molecular structure of complex 7 is shown in Fig. 5, selected bond lengths and angles are collected in Table 5. As expected, when the Htpu was replaced by the H_{2} thpu ligand, we found that the bonding is through the deprotonated SH rather than the OH group and the ligand adopts $\mathrm{N}^{1} / \mathrm{S}^{2}$ mode to coordinate to tin atom. The bond length of $\operatorname{Sn}(1)-\mathrm{S}(1)(2.4661(17) \AA$) approaches to the sum of the covalent radii of tin and sulfur ($2.42 \AA$) [21]. The bond distance of $\operatorname{Sn}(1)-\mathrm{N}(1)$ $(2.653(5) \AA)$ is midway between the sums of the van der Waals and covalent radii of tin and nitrogen (2.15,

Table 5
Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for 7

$\mathrm{Sn}(1)-\mathrm{C}(18)$	$2.127(6)$	$\mathrm{N}(3)-\mathrm{C}(3)$	$1.350(7)$
$\mathrm{Sn}(1)-\mathrm{C}(12)$	$2.134(6)$	$\mathrm{N}(3)-\mathrm{C}(4)$	$1.368(8)$
$\mathrm{Sn}(1)-\mathrm{C}(6)$	$2.165(6)$	$\mathrm{N}(4)-\mathrm{C}(4)$	$1.311(8)$
$\mathrm{Sn}(1)-\mathrm{S}(1)$	$2.4661(17)$	$\mathrm{N}(4)-\mathrm{C}(5)$	$1.383(8)$
$\mathrm{Sn}(1)-\mathrm{N}(1)$	$2.653(5)$	$\mathrm{O}(1)-\mathrm{C}(1)$	$1.343(7)$
$\mathrm{N}(1)-\mathrm{C}(2)$	$1.341(7)$	$\mathrm{S}(1)-\mathrm{C}(2)$	$1.740(6)$
$\mathrm{N}(1)-\mathrm{C}(1)$	$1.343(7)$	$\mathrm{C}(1)-\mathrm{C}(5)$	$1.398(8)$
$\mathrm{N}(2)-\mathrm{C}(2)$	$1.332(7)$	$\mathrm{C}(3)-\mathrm{C}(5)$	$1.375(8)$
$\mathrm{N}(2)-\mathrm{C}(3)$	$1.345(7)$		
$\mathrm{C}(18)-\mathrm{Sn}(1)-\mathrm{C}(12)$	$115.3(2)$	$\mathrm{C}(6)-\mathrm{Sn}(1)-\mathrm{S}(1)$	$99.43(16)$
$\mathrm{C}(18)-\mathrm{Sn}(1)-\mathrm{C}(6)$	$106.7(2)$	$\mathrm{C}(18)-\mathrm{Sn}(1)-\mathrm{N}(1)$	$78.38(19)$
$\mathrm{C}(12)-\mathrm{Sn}(1)-\mathrm{C}(6)$	$106.6(2)$	$\mathrm{C}(12)-\mathrm{Sn}(1)-\mathrm{N}(1)$	$88.6(2)$
$\mathrm{C}(18)-\mathrm{Sn}(1)-\mathrm{S}(1)$	$115.86(17)$	$\mathrm{C}(6)-\mathrm{Sn}(1)-\mathrm{N}(1)$	$159.03(19)$
$\mathrm{C}(12)-\mathrm{Sn}(1)-\mathrm{S}(1)$	$111.11(17)$	$\mathrm{S}(1)-\mathrm{Sn}(1)-\mathrm{N}(1)$	$60.92(10)$

$3.74 \AA$) [24], and approaches to the $\mathrm{Sn}-\mathrm{N}$ length in the complex 1. The $\mathrm{C}-\mathrm{S}$ bond distance ($\mathrm{C}(2)-\mathrm{S}(1)$ $1.740(6) \AA$) is similar to the longer C-S bond in complex 2, also suggesting that the single $\mathrm{C}-\mathrm{S}$ bond has some double-bond character in the deprotonated H_{2} thpu. Including the $\operatorname{Sn}(1)-\mathrm{N}(1)$ interaction, the geometry at $\mathrm{Sn}(1)$ atom becomes distorted cis-trigonal bipyramidal with the axial-tin-axial angle $\mathrm{N}(1)-\mathrm{Sn}(1)-\mathrm{C}(6)$ of 159.03(19).

There recognized two kind of hydrogen bonding in the crystal of complex 7. One exists between the N(3)$\mathrm{H}(3)$ and the $\mathrm{N}(2)$ derive from a neighboring molecule $(\mathrm{N}(3)-\mathrm{H}(3) \cdots \mathrm{N}(2) \quad 2.804(7) \AA, \quad \mathrm{N}(3)-\mathrm{H}(3)-\mathrm{N}(2)$ 166.45°). And the other exists between $\mathrm{O}(1)-\mathrm{H}(1)$ and the $\mathrm{N}(4)$ of a third molecule $(\mathrm{O}(1)-\mathrm{H}(1) \cdots \mathrm{N}(4)$ $\left.2.883(7) \AA, \mathrm{O}(1)-\mathrm{H}(1)-\mathrm{N}(4) 143.39^{\circ}\right)$. Thus the supramolecular structure of complex 7 is constructed as a 1D polymer (Fig. 6).

2.4.4. $\left(\mathrm{Me}_{2} \mathrm{SnCl}\right)_{2}(d t p u) \cdot \mathrm{H}_{2} \mathrm{O}$ (9)

The molecular structure of complex 9 is shown in Fig. 7, selected bond lengths and angles are given in Ta-

Fig. 5. Molecular structure of the complex 7.

Fig. 6. Perspective view showing the 1D polymer of the complex 7.

Fig. 7. Molecular structure of the complex 9.

Table 6
Selected bond lengths ((\AA) and bond angles $\left({ }^{\circ}\right)$ for 9

$\mathrm{Sn}(1)-\mathrm{C}(6)$	$2.101(5)$	$\mathrm{N}(2)-\mathrm{C}(2)$	$1.348(8)$
$\mathrm{Sn}(1)-\mathrm{Cl}(1)$	$2.430(2)$	$\mathrm{N}(2)-\mathrm{C}(3)$	$1.375(8)$
$\mathrm{Sn}(1)-\mathrm{S}(1)$	$2.524(2)$	$\mathrm{N}(3)-\mathrm{C}(3)$	$1.322(8)$
$\mathrm{Sn}(1)-\mathrm{N}(1)$	$2.597(5)$	$\mathrm{N}(3)-\mathrm{C}(4)$	$1.365(8)$
$\mathrm{Sn}(2)-\mathrm{C}(7)$	$2.091(7)$	$\mathrm{N}(4)-\mathrm{C}(5)$	$1.329(9)$
$\mathrm{Sn}(2)-\mathrm{Cl}(2)$	$2.434(3)$	$\mathrm{N}(4)-\mathrm{C}(4)$	$1.352(9)$
$\mathrm{Sn}(2)-\mathrm{S}(2)$	$2.484(2)$	$\mathrm{S}(1)-\mathrm{C}(2)$	$1.709(7)$
$\mathrm{Sn}(2)-\mathrm{N}(2)$	$2.428(5)$	$\mathrm{S}(2)-\mathrm{C}(3)$	$1.730(7)$
$\mathrm{N}(1)-\mathrm{C}(5)$	$1.304(9)$	$\mathrm{C}(1)-\mathrm{C}(4)$	$1.391(9)$
$\mathrm{N}(1)-\mathrm{C}(1)$	$1.374(8)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.392(9)$
$\mathrm{C}(6 \mathrm{~A})-\mathrm{Sn}(1)-\mathrm{C}(6)$	$147.2(4)$	$\mathrm{C}(7 \mathrm{~A})-\mathrm{Sn}(2)-\mathrm{C}(7)$	$131.5(4)$
$\mathrm{C}(6)-\mathrm{Sn}(1)-\mathrm{Cl}(1)$	$99.70(17)$	$\mathrm{C}(7)-\mathrm{Sn}(2)-\mathrm{Cl}(2)$	$101.9(2)$
$\mathrm{C}(6)-\mathrm{Sn}(1)-\mathrm{S}(1)$	$103.85(17)$	$\mathrm{C}(7)-\mathrm{Sn}(2)-\mathrm{S}(2)$	$110.9(2)$
$\mathrm{Cl}(1)-\mathrm{Sn}(1)-\mathrm{S}(1)$	$85.33(8)$	$\mathrm{Cl}(2)-\mathrm{Sn}(2)-\mathrm{S}(2)$	$89.40(9)$
$\mathrm{C}(6)-\mathrm{Sn}(1)-\mathrm{N}(1)$	$84.24(16)$	$\mathrm{C}(7)-\mathrm{Sn}(2)-\mathrm{N}(2)$	$88.9(2)$
$\mathrm{Cl}(1)-\mathrm{Sn}(1)-\mathrm{N}(1)$	$164.19(12)$	$\mathrm{Cl}(2)-\mathrm{Sn}(2)-\mathrm{N}(2)$	$152.57(14)$
$\mathrm{S}(1)-\mathrm{Sn}(1)-\mathrm{N}(1)$	$78.86(13)$	$\mathrm{S}(2)-\mathrm{Sn}(2)-\mathrm{N}(2)$	$63.16(14)$

ble 6. There exists crystallographic symmetry in the complex 1. Thus, two $\mathrm{Sn}-\mathrm{C}$ bonds are identical, respectively. As shown in Fig. 7, when we choose the $\mathrm{H}_{2} \mathrm{dtpu}$ ligand to react with $\mathrm{Me}_{2} \mathrm{SnCl}_{2}$, the complex 9 is obtained. Which is a binuclear and the $\mathrm{H}_{2} \mathrm{dtpu}$ adopts $\mathrm{N}^{1} / \mathrm{S}^{2}$ and $\mathrm{S}^{6} / \mathrm{N}^{7}$ modes. Both of the $\mathrm{Sn}-\mathrm{S}$ bond lengths

Fig. 8. Perspective view showing the 2D network of the complex 9 .
$(S n(1)-S(1) 2.524(2) \AA$ and $\operatorname{Sn}(2)-S(2) 2.484(2) \AA)$ approach the sum of the covalent radii of Sn and S ($2.42 \AA$) [21]. Concerning the $\mathrm{Sn}-\mathrm{N}$ bond lengths, though $\operatorname{Sn}(1)-\mathrm{N}(1)$ bond length $(2.597(5) \AA$) is little longer than that of $\operatorname{Sn}(2)-\mathrm{N}(2)(2.428(5) \AA)$, they are both midway between the sums of the van der Waals and covalent radii of tin and nitrogen $(2.15-3.74 \AA)$ [24]. Two $\mathrm{Sn}-\mathrm{Cl}$ bonds $(\mathrm{Sn}(1)-\mathrm{Cl}(1) 2.430(2) \AA$ and $\mathrm{Sn}(2)-\mathrm{Cl}(2) 2.434(3) \AA)$ are typical $\mathrm{Sn}-\mathrm{Cl}$ bond lengths found in chloroorganotin(IV) complexes in general [12,25]. Thus, the geometry at tin atoms become distorted trigonal bipyramidal with $\mathrm{C}(6), \mathrm{C}(6 \mathrm{~A})$ and $\mathrm{S}(1)$ atoms for $\mathrm{Sn}(1), \mathrm{C}(7), \mathrm{C}(7 \mathrm{~A})$ and $\mathrm{S}(2)$ atoms for $\mathrm{Sn}(2)$ occupying the equatorial plane. And the axial angle $\mathrm{Cl}(1)-\mathrm{Sn}(1)-\mathrm{N}(1)$ and $\mathrm{Cl}(2)-\mathrm{Sn}(2)-\mathrm{N}(2)$ are 164.19(12) and $152.57(14)$, respectively.

The supramolecular structure of complex 9 is a 2 D network (Fig. 8) linked by all kinds of weak interactions such as $\mathrm{Sn} \cdots \mathrm{Cl}, \mathrm{Sn} \cdots \mathrm{S}, \mathrm{Sn} \cdots \mathrm{N}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$. The $\mathrm{Sn} \cdots \mathrm{Cl}$ distance is $3.580(8) \AA$, shorter than the sum of the van der Waals' radii of Sn and $\mathrm{Cl}(3.85 \AA)$ [24]. The $\mathrm{Sn} \cdots \mathrm{S}$ and $\mathrm{Sn} \cdots \mathrm{N}$ are $3.675(7) \AA$ and $2.907(8) \AA$, respectively. For the hydrogen bond, the $\mathrm{N}(4)-$ $\mathrm{H}(4) \cdots \mathrm{Cl}(1)$ and $\mathrm{N}(4)-\mathrm{H}(4)-\mathrm{Cl}(1)$ are $3.278(7) \AA$ and 143.16°, respectively. All of them benefit the construction of the 2D network.

Besides, it should be noted that the component $\left(\mathrm{Me}_{2} \mathrm{SnCl}\right)_{2}(\mathrm{dtpu})$ crystallizes with one molecule of water that acts as an acceptor in the hydrogen bond ($\mathrm{N}(4)-\mathrm{H}(4) \cdots \mathrm{O}(1) \quad 2.933(6) \AA, \quad \mathrm{N}(4)-\mathrm{H}(4)-\mathrm{O}(1)$ 126.05°).

3. Experimental details

3.1. Materials and measurements

Trimethyltin chloride, tri- n-butyltin chloride, triphenyltin chloride, dimethyltin dichloride, di-n-butyltin dichloride, diphenyltin dichloride, and all of the
thiopurine were commercially available, and they were used without further purification. Tribenzyltin chloride and dibenzyltin dichloride were prepared by a standard method reported in the literature [26]. The melting points were obtained with Kofler micro melting point apparatus and are uncorrected. Infrared-spectra were recorded on a Nicolet-460 spectrophotometer using KBr discs and sodium chloride optics. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{119} \mathrm{Sn}$ NMR spectra were recorded on a Bruker AMX-300 spectrometer operating at 300, 75.3 and 93.28 MHz , respectively. The TMS and $\mathrm{Me}_{4} \mathrm{Sn}$ were used as internal standards. The chemical shifts were given in ppm in CDCl_{3} or $\mathrm{CD}_{3} \mathrm{Cl}-\mathrm{D}_{2} \mathrm{O}$ solvent. Elemental analyses were performed with a PE-2400II apparatus.

3.2. Synthesis

The general route of synthesis is shown in the following. The reaction was carried out under nitrogen atmosphere with use of standard Schlenk technique. Thiopurine (Htpu, H_{2} thpu or $\mathrm{H}_{2} \mathrm{dtpu}$) ligand and the sodium methoxide were added to the solution of methanol, the mixture was stirred for 10 min , and then added organotin chlorides to the mixture, continuing the reaction about 12 h at $40^{\circ} \mathrm{C}$. After cooling down to room temperature, filtered it. The solvent of the filtrate was gradually removed by evaporation under vacuum until solid product was obtained. The solid was then recrystallized from methanol and the elemental analyses of all products are shown in Table 7.

Table 7
Physical and analytical data for organotin(IV) complexes of Htpu, H_{2} thpu and $\mathrm{H}_{2} \mathrm{dtpu}$

Complex ${ }^{\text {a,b }}$	m.p. $\left({ }^{\circ} \mathrm{C}\right)$	Yield (\%)	Analysis Found (Calc.) (\%)		
			C	H	N
$\mathrm{Me}_{2} \mathrm{Sn}(\mathrm{tpu})_{2} \cdot 2 \mathrm{MeOH}(\mathbf{1})$	142-144	73	32.44(32.64)	3.74(3.91)	21.71(21.75)
$(\mathrm{n}-\mathrm{Bu})_{2} \mathrm{Sn}(\mathrm{tpu})_{2}(\mathbf{2})$	268-270	78	40.33(40.39)	4.54(4.52)	21.03(20.93)
$(\mathrm{Ph})_{2} \mathrm{Sn}(\mathrm{tpu})_{2}(3)$	168-171	69	46.09(45.93)	2.85(2.80)	19.38(19.48)
$\left(\mathrm{PhCH}_{2}\right)_{2} \mathrm{Sn}(\mathrm{tpu})_{2}$ (4)	123-124	81	47.96(47.78)	3.41(3.34)	18.45(18.57)
$\mathrm{Me}_{3} \mathrm{Sn}(\mathrm{Hthpu})(5)$	122-124	75	29.23(29.03)	3.68(3.65)	17.09(16.93)
$(n-\mathrm{Bu})_{3} \mathrm{Sn}(\mathrm{Hthpu})_{2}(6)$	75-77	65	44.78(44.66)	6.65(6.61)	12.33(12.25)
$\mathrm{Ph}_{3} \mathrm{Sn}(\mathrm{Hthpu})(7)$	212-215	84	53.35(53.41)	3.41 (3.51)	10.79(10.83)
$\left(\mathrm{PhCH}_{2}\right)_{3} \mathrm{Sn}(\mathrm{Hthpu})(8)$	142-143	87	54.47(54.26)	3.75(3.79)	10.40(10.55)
$\left(\mathrm{Me}_{2} \mathrm{SnCl}\right)_{2}(\mathrm{dtpu}) \cdot \mathrm{H}_{2} \mathrm{O}$ (9)	116-118	70	19.05(19.01)	2.68(2.84)	10.05(9.85)
$\left(n-\mathrm{Bu}_{2} \mathrm{SnCl}\right)_{2}(\mathrm{dtpu})(10)$	148-150	74	34.94(35.08)	5.33(5.33)	7.64(7.79)
$\left(\mathrm{Ph}_{2} \mathrm{SnCl}\right)_{2}(\mathrm{dtpu})(11)$	140-143	85	43.72(43.59)	2.56 (2.78)	7.15(7.01)
$\left[\left(\mathrm{PhCH}_{2}\right)_{2} \mathrm{SnCl}_{2}(\mathrm{dtpu})(\mathbf{1 2)}\right.$	124-125	71	46.14(46.35)	3.61(3.54)	6.67(6.55)

${ }^{\text {a }}$ All complexes are pale yellow.
${ }^{\text {b }}$ Solvent of recrystallization: methanol.

Table 8
Crystal data and structure refinement parameters for 1, 2, 7 and 9

	1	2	7	9
Empirical formula	$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{8} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{Sn}$	$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{8} \mathrm{~S}_{2} \mathrm{Sn}$	$\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{OSSn}$	$\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{OS}_{2} \mathrm{Sn}_{2}$
M	515.19	535.26	517.16	568.66
T (K)	293(2)	298(2)	298(2)	298(2)
Crystal system	Orthorhombic	Monoclinic	Triclinic	Orthorhombic
Space group	Cmc2 ${ }_{1}$	$P 2{ }_{1} / c$	$P \overline{1}$	Cmea
$a(\mathrm{~A})$	27.28(3)	13.589(8)	9.431(3)	10.827(8)
b (\AA)	7.383(8)	23.021(14)	9.487(3)	26.875(18)
$c(\mathrm{~A})$	10.597(12)	15.498(9)	15.866(5)	16.320(11)
$\alpha\left({ }^{\circ}\right)$	90	90	88.172(5)	90
$\beta{ }^{\circ}{ }^{\circ}$	90	103.308(9)	78.842(6)	90
$\gamma\left({ }^{\circ}\right)$	90	90	74.973(5)	90
$V\left(\AA^{3}\right)$	2134(4)	4718(5)	1344.9(8)	4749(6)
Z	4	8	2	8
$\mu\left(\mathrm{mm}^{-1}\right)$	1.418	1.281	1.045	2.504
Reflections collected	4270	23,856	7123	11,483
Independent reflections	1601	8116	4661	2121
$R_{\text {int }}$	0.0403	0.0537	0.0399	0.0357
Goodness-of-fit on F^{2}	0.985	0.941	0.928	1.026
$R_{1}, w R_{2}[I>2 \sigma(I)]$	0.0274, 0.0606	0.0491, 0.1067	0.0544, 0.1267	0.0351, 0.0941
$R_{1}, w R_{2}$ (all data)	0.0301, 0.0618	$0.1054,0.1323$	0.0800, 0.1371	0.0480, 0.1033

3.3. X-ray crystallography

Crystals were mounted in Lindemann capillaries under nitrogen. All X-ray crystallographic data were collected on a Bruker SMART CCD 1000 diffractometer with graphite monochromated Mo $\mathrm{K} \alpha$ radiation ($\lambda=0.71073 \AA$). A semi-empirical absorption correction was applied to the data. The structure was solved by di-rect-methods using shelxL-97 and refined against F^{2} by full-matrix least squares using shelxl-97. The positions of hydrogen atoms were calculated, and their contributions in structural factor calculations were included. Crystal data and experimental details of the structure determinations are listed in Table 8.

4. Supplementary material

Crystallographic data (excluding structure factors) for the structure reported in this paper (1, 2, 7 and $\mathbf{9}$) have been deposited with the Cambridge Crystallographic Data Center as Supplementary Publication Nos. CCDC-220163, 222016, 223775, 223782. Copies of the data can be obtained free of charge on application to the Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (fax: +44 1223 336033; e-mail: deposit@ccdc.cam.ac.uk or http://www.ccdc.cam.ac.uk).

Acknowledgments

We thank the National Natural Science Foundation of China (20271025) and the Natural Science Foundation of Shandong Province for financial support.

References

[1] S.K. Duboy, U. Roy, Appl. Organomet. Chem. 17 (2003) 3.
[2] L. Pellerito, L. Nagy, Coord. Chem. Rev. 224 (2002) 111.
[3] (a) K.C. Molloy, S.J. Blunden, R. Hill, J. Chem. Soc., Dalton Trans. (1988) 1259;
(b) S. Bhandari, M.F. Mahon, J.G. Mc Ginley, K.C. Molloy, C.E.E. Roper, J. Chem. Soc., Dalton Trans. (1998) 3425; (c) C.L. Ma, Q. Jiang, R.F. Zhang, J. Organomet. Chem. 678 (2003) 148;
(d) J. Bravo, M.B. Cordero, J.S. Casas, M.V. Castaño, A. Sánchez, J. Sordo, J. Organomet. Chem. 513 (1996) 63;
(e) C.L. Ma, J.F. Sun, Appl. Organomet. Chem. 18 (2004) 418.
[4] (a) E.S. Raper, Coord. Chem. Rev. 61 (1985) 115;
(b) E.S. Raper, Coord. Chem. Rev. 153 (1996) 199.
[5] K.G. Van Scoik, C.A. Johnson, W.R. Porter, Drug Metab. Rev. 16 (1985) 157.
[6] R. Barbieri, E. Rivarola, F. Di Bianca, F. Huber, Inorg. Chim. Acta 57 (1982) 37.
[7] R. Barbieri, F. Di Bianca, E. Rivarola, F. Huber, Inorg. Chim. Acta 108 (1985) 141.
[8] C.L. Ma, F. Li, Q. Jiang, R.F. Zhang, J. Organomet. Chem. 689 (2004) 96.
[9] C.L. Ma, J.H. Zhang, Appl. Organomet. Chem. 17 (2003) 788.
[10] (a) T.A. Geoge, J. Organomet. Chem. 31 (1971) 233;
(b) J.R. May, W.R. Mc Whinnie, R.C. Poller, Spectrochim. Acta A27 (1971) 969.
[11] R.J. Deeth, K.C. Molloy, M.F. Mahon, S. Whittaker, J. Organoment. Chem. 430 (1992) 25.
[12] R.C. Poller, The Chemistry of Organotin Compounds, Logos Press, London, 1970.
[13] Y. Ye, Q. Zeng, L.Z. Liu, Synth. Commun. 31 (2001) 2373.
[14] A.M. Brodie, H.D. Holden, J. Lewis, J.M. Taylor, J. Chem. Soc., Dalton Trans. (1986) 633.
[15] K. Yamanari, M. Kida, M. Yamamoto, T. Fujihara, A. Fuyuhiro, S. Kaizaki, J. Chem. Soc., Dalton Trans. (1996) 305.
[16] J. Holeček, K. Handlíř, M. Nadvornik, A. Lyčka, J. Organomet. Chem. 258 (1983) 147.
[17] D.K. Srivastava, V.D. Gupta, H. Nöth, W. Rattay, J. Chem. Soc., Dalton Trans. (1988) 1533.
[18] A. Tarassoli, T. Sedaghat, B. Neumüller, M. Ghassemzadeh, Inorg. Chim. Acta 318 (2001) 15.
[19] R. Colton, D. Dakternieks, Inorg. Chim. Acta 148 (1988) 31.
[20] K. Handlíř, A. Lyčka, J. Holeček, M. Nádvorník, V. Pejchal, A. Sebald, Collect. Czech. Chem. Commun. 59 (1994) 885.
[21] J.E. Huheey, Inorganic Chemistry, third ed., Harper, Cambridge, 1983.
[22] (a) J. Bravo, M.B. Cordero, J.S. Casas, A. Sanchez, J. Sordo, E.Z. Castellano, J. Zuckerman-Schpector, J. Organomet. Chem. 482 (1994) 147;
(b) R. Cea-Olivares, O. Jiménez-Sandoval, G. Espinosa-Pérez, C. Silvestru, J. Organoment. Chem. 484 (1994) 33;
(c) R. Cea-Olivares, O. Jiménez-Sandoval, G. Espinosa-Pérez, C. Silvestru, Polyhedron 13 (1994) 2809.
[23] O. Jiménez-Sandoval, R. Cea-Olivares, S. Hernández-Ortega, Polyhedron 16 (1997) 4129.
[24] A. Bondi, J. Phys. Chem. 68 (1964) 441.
[25] F.H. Allen, O. Kennard, D.G. Watson, L. Brammer, A.G. Orpen, R. Taylor, J. Chem. Soc., Perkin Trans. II (1987) S1.
[26] K. Sisido, Y. Takeda, Z. Kinugawa, J. Am. Chem. Soc. 83 (1961) 538.

[^0]: * Corresponding author. Tel.: +86635825 8579/823 8121; fax: +86 5386715521.

 E-mail address: macl@lctu.edu.cn (C. Ma).

